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SIGNIFICANCE AND EXPLANATION

A wide variety of problems involving nonlinear partial differential equa-
tions, subject to boundary conditions, may be shown to have solutions by
establishing that the associated differential operators satisfy a certain tech-
nical condition.

This condition, called maximal monotonicity, allows the use of a well
developed abstract theory which includes results about existence, regularity,
etc., of solutions of operator equations.

It is quite useful, therefore, to have easily verified conditions which
imply that an operator is maximal mcnotone.

Frequently an operator may be regarded as the sum of simpler components.
This paper gives a new sufficient condition which guarantees that the sum of

two maximal monotone operators is again maximal monotone.
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ON THE MAXIMALITY OF THE SUM OF TWO
MAXIMAL MONOTONE OPERATORS+

Hedy Attouch

Introduction

Let A and B be two maximal monotone operators in a real Hilbert space H.
The classical theorem of R. T. Rockafellar [7], H. Brezis [2] tells us that if
D(A) n Int D(B) # ¢, then the sum A + B 1is still maximal monotone. We show
that the same conclusion holds under the weaker, symmetric assumption:

Int(D(A) - D(B)) > 0 (Theorem 1)*. When one of the operators is a subdifferential,
A = 3¢, (resp. when the two operators are subdifferentials A = 3¢, B = 3)) this
condition can be weakened to Int(D(y) - D(B)) > 0 (Theorem 2) (resp.

Int(D(¢) - D(YP)) >0 (Theorem 3)). These results are intimately related (Remark

2 and Remark 3) to:

a) H. Brezis and A. Haraux in [4) give sufficient conditions on two maximal
monotone operators A and B, in order that R(A+B) ~ R(A) + R(B) (i.e. that
the range of the sum and the sum of the ranges have same interior and closure).

b) The classical "Slater stability condition" (Continuity of a functional at
one point of the domain of the other) can be weakened (cf. for example, J. P. Aubin
[1]) to the following symmetric one: the difference of their domains is a neigh-
bourhood of the origin.

I thank very much J. P. Aubin and H. Brezis for their advise and stimulating

discussions.

TThese notes have been written while visiting the Mathematics Research Center of
the University of Wisconsin-Madison (June-August 1979) during the CNRS~NSF
visiting program G.05.0252.

*
In “act (cf. Remark 2) one can weaken this assumption to
Ir (Conv D(A) - Conv D(B)) > 0.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




Let H be a real Hilbert space with the norm I-I, and the scalar product

(*»*). Given A a maximal monotone operator in H, we shall denote by D(A)

1

its domain, by R(A) its range, by A ='§(I - (I4)a) ), for A > 0, its

A
Yosida approximation and by Ao its minimal section.
Theorem 1

Let A and B two maximal monotone operators in H.
*
Let us assume that O € Int(D(A) - D(B)). (*)

Then A + B 1is a maximal monotone operator.

Proof of Theorem 1

Given £ in H and X > 0, 1let us consider uA the solution of
i

(1,) u, + Au,. + Bu, > f

A A A ATA
and let us prove that sup [Bxuxl < +o; from the Brezis/Crandall/Pazy theorem
A>0
[3] it will follow chat the uA converges, as A goes to zero, to a solution 5
of
(1) u+ Au + Bu > £ ,

«nd this implies the maximality of A + B.
We first observe that the (uA)X > 0, are bounded in H: taking

D(A) n D(B), and using the monotonicity of A + B one has

Al
uy, ~x| 2 YRR AR B,x)| which implies lu, | < 2|x| + |£] + 12%] + |8%].
Iy assumption, there exists a p > 0 such that

Vy ¢ H, |y|] <p ye D@ ~-D(®B) .

iven such a y, it suffices to show that sup (BAUA'Y) < C(y) < +=; the con-
A>0
clusion will then follow from the uniform boundedness theorem.

If y ¢ H, y can be written as y = B - a with B € D(B), a € D(A), and

)

That is to say, the algebraic difference of their domains is a neighbourhood
of the origin.




(BAuA,y) = (BAuA'B) - (Bxuk,a) :

a) From the monotonicity of BA'
(Bu, = BAB’ dy T B) > 0, which implies

(Byu,,B) < (Byu,,u,) - (B,B,u, - B)

A

0
so, (BAUA'Y> < (Bxux,ux -a)+ |B Bl-luA =B %

b) Since u satisfies (lx), BA“A = f - u, - VA with VA € Aux, and the

A
preceding inequality becomes:
(B.u,,y) < (£ -u, -V, u =-a)+ IBOBI-Iu -8l -
Rt A X A

c) From the monotonicity of A,

(v, - Aoa, LR SRGE S s <VA’ u, - a) < IAOQI' = al .

A % L

A
Finally,

0 (0}
(Byu,,y) < lux - all|f - uAI + |a"al) + qu - Bl+|B78] < c(y)

since the (ux) are bounded for A > O.

Remark 1. The condition Int(D(A) - D(B)) > O, is symmetric in A and B and
is weaker than the classical condition of Rockafellar [7], H. Brezis [2],
Int D(A) n D(B) # ¢, since Int(D(A) - D(B)) > Int D(A) - D(B). Clearly this
weaker condition can be satisfied even if D(A) and D(B) have an empty interior
domain!
Let us see now how to improve this result when one of the operator is a sub-
differential.
Theorem 2
Let B be a maximal monotone operator in H and 3¢ be the subdifferential
of ¢, a convex, lower semi continuous, proper function from H into ]-x,+=].
Let us assume that O € Int(D(¢) = D(B))

Then

3¢ + B is a maximal monotone operator.

e T




Proof of Theorem 2

As in the proof of Theorem 1, we consider the solution uA of

(2,) u

N\ s,

N + aw(ux) + BA“A

We want to prove that sup lBAuAl < +», The equation (2A) can be written
A

(2A)bis VW eH 0> (P(u)‘) - ¢(v) + (f - u, - B)‘u)‘, v - uA) 4

+
The (u}‘))‘>0 are bounded in H: Let us take vy € D(#¥) n D(B) and b, c € R

such that ¢(x) + beI + c > 0; Since (BA“A = vao, W vo)‘i 0, from (2,)

A'bis

we get:

-bluxl == ¢(v0) A - u, v u,) + (B,v SNprx0

0 il |
; 2

so there exist P, and p, € R such that: ¥A > 0 |uA| + plluxl * P, 2 0,

which implies that the (“A) are bounded for A > 0.

By assumption, there exists a p > 0 such that
vweH |yl <o y € D(¢y) - D(B) .

Let us prove that for any such vy

sup (Bxux,y) < Cly) < +=
A

the conclusion will follow from the uniform boundedness theorem; so y =8 - a,

B € D(B), o € D(¢) and
(Byu,,y) = (B)‘u,‘.ﬁ) = (Byu,,a) .

From the monotonicity of BA

0
(Byu,sy) < (Byuy, u, = a) + |B BIv'uA -8l .

Now take v =a in (2,)

ZA bis®

(Byu,, uy = a) < ¢(a) - w(uA) + (f - U, - a) .

A

Combining the two last inequalities, we get




- a| + |8%]||u, - 8|

olu

~
o
>
(=)
>
5<
~
A

< ¢ +blu| +ec+ |£-u

A A

A

C(y) since the (ux) are bounded.

A>0

Finally, when the two operators are subdifferentials we obtain the following
g result: We denote by ¢* the conjugate function of ¢ and by V the inf convolu-

tion (i.e. given two functions ¢ and ¢, then ¢ v ¢b(x) = inf{¢&(x-y) + ¢é(y)})-
Y

Theorem 3

Let ¢ and Yy two convex, lower semi-continuous, proper functions from H
into ]-«,+»].

Let us assume that 0 € Int(D(p) - D(y)).
Then ¢* V Y* is lower semi continuous, the inf-convolution is exact and 0¢ + 3V
is a maximal monotone operator.

Proof of Theorem 3

a) Let ¢ € R and fn §:§ f such that ¢* V w*(fn) < c; let us prove that

¢* V y*(f) < c; from the definition of the inf-convolution, there exist e 0

and un € H such that:
(3) Pl )+ PRE = o AL TR N

Let us prove that sup Iunl < +o; then taking a weakly converging subsequence
n

u s e, by the lower semi-continuity of ¢* and y*, we shall get
Kk

¢*(u) + Y*(f - u) < C and therefore ¢* V Y*(f) < C .
The same argument will tell us that
Vf € D(¢* V ¢y*) Bu € H such that ¢* V P*(f) = p*(u) + P*(f - u)
(i.e. the inf-convolution is exact).

In order to prove the boundedness of the (un)nell we apply the uniform

boundedness theorem: 1let p > 0 such that

«Be




y

i en T

¥y € H |y| <p =y e€DW¥ -DWU

and let us prove that for any such y sup (un,y) < Cly) < +=.
n

So y = oa-B, with a € D(¢), B € D(y) and

o) b by (E i un.B) - (£,8)
Zta) * o) + Y*(E - u ) + $(B) - (£,B) .
From (3)
Y120 % 8o e(a) + Y(B) - (£,B)
and the (un)n N are bounded.

b) Let us take (u,f) ¢ 3(wy) and let us prove that (u,f) € 3¢+3y; from

the maximal monotony of 09 (¢+y) the result will follow:
*
(u,f) € 3le+y) = (p+Y) (u) + (p+Y) (f) - (f,u) =0

* ; * %
From a), (¢+y) = (¢* V P*) = ¢* V Y*, since ¢* V P* is lower-semi-continuous.
“oreover, there exists u € H such that (¢* V Y*) (£) = p*iu) + y*(f - u). So,
{e(u) + ¢*(u) - (u,u)} + {Y(u) + Y*(f - u) - (u,f-u)} = 0. Since each of these

gquantities is positive, each is equal to zero which means that

ue 3d(u), f-u € 3Y(u) and £ = u + (£-u) € (39+3yY) (u)
remark 2
The Brezis-Haraux theorem [4] states:
Let A and B two maximal monotone operators satisfying:
A+B 1is maximal monotone
A and B satisfy the condtion (*)
then R(A+B) ~ R(A) + R(B).

We recall that a monotone operator S satisfies (*) if

Yx D(S) ¥y ¢ D(S) AC(x,y) such that: ¥z € D(A) (Sz-Sx,z-y) > C(x,y) .

-G
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As noticed by Brezis, one can deduce the theorem 1 from this theorem through

the following transformation:
Let us consider the equation (1) 2u + Au + Bu 2 f, which we want to solve.
Let us write it u + Au + u + Bu > £f; since I + B 1is onto, let us define

v = u + Bu as a new variable; the equation to be solved becomes
-1 =1
(4) (I+B) “(v) - (I+A) “(f-v) =0 .

We apply the B/H theorem with Sv = (I+B)-l(v), TV = -(I+A)-1(f-v). Clearly,
these two operators are maximal monotone continuous operators and their sum is
maximal monotone. They satisfy the condition (*):

1

«(148) Y(z) - (1+B) " Y(x), z-y) = (u-v, z-y) with u = (1+8) 1z, v = (1+8) 1x

(u-v, u + Bu - y)

(u-v, u-v + (v+Bv) + (Bu-Bv) - y)

lu-v|? = [xsy[[u-v] > couy .

v

Therefore, R((1+B) L - (1+a) 1(f- )) > InticConv R(I+8) 1 + Conv R(-(14A) "X (£- 1))

> Int [Conv D(B) - Conv D(A)] .

So if we assume that Int[Conv D(B) - Conv D(A)] > 0 we can solve (4) and there-

fore (1).

Remark 3

The main part of the proof of the Theorem 3 is the following:

If 0 ¢ Int (D(p) - D(YP)) then (5) (¢+yY)* = p* V Yy*, This result improves
the classical result of Moreau [6]. In other words, the condition
0 ¢ Int(D(¢)-D(¥)), which is in fact a Slater-stability condition, (weaker than
the classical one), implies the equality (5) of the primal and dual problem, and
the existence of a solution for the dual problem. More generally, in the varia-
tional situation studied by Ekeland-Temam, [5], one can prove the following

statement:




|
|
|
#
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!
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Theorem (See for instance J. P. Aubin [1] Ch. 14).

Let V and Y two reflexive Banach spaces and
A : V~>Y a continuous linear map
¢ : Y > ]-», 4] a convex, &sc, proper function
Y : V> ]-2,42] a convex, &sc, proper functions
such that Int{AD(Y) - D(¢)} > O.

Then V¥f € V* Inf{y(u) + ¢(Au) - (f,u)} = - Min {Y*(£-A*g) + ¢*(g)} .
uev gey*

: + 5 :
Taking A = Id with V = Y we get the previous result.
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